NoSpam! verification questionSolve the equation.(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-***436=
Показано с 1 по 2 из 2

Тема: как процессор становился многоядерным.

  1. #1

    По умолчанию как процессор становился многоядерным.


    …в процессе развития количество ядер будет становиться всё больше и больше.
    (Разработчики Intel)




    Краткая хроника «ядерной» гонки чипмейкеров, или Как процессор становился многоядерным
    • 1999 г. – анонсирован первый в мире 2-ядерный CPU – серверный RISC-процессор IBM Power 4.
    Стартовала эпоха многоядерных процессоров!

    2001 г. – начались продажи 2-ядерных процессоров IBM Power 4.

    2002 г. – о перспективах использования двух ядер в своих процессорах архитектуры K8 заявила компания AMD. Практически одновременно с аналогичным заявлением выступила Intel.

    Декабрь 2002 г. – вышли первые десктопные Intel Pentium 4, поддерживающие «виртуальную» 2-ядерность – технологию Hyper-Threading.

    2004 г.IBM выпустила второе поколение своих 2-ядерных процессоров – IBM Power 5. Каждое из ядер Power 5 поддерживает одновременное выполнение двух программных потоков (то есть снабжено аналогом Hyper-Threading).

    18 апреля 2005 г.Intel выпустила первый в мире настольный 2-ядерный процессор Pentium Extreme Edition 840 (кодовое название – Smithfield). Выполнен с использованием 90-нм технологии.

    21 апреля 2005 г.AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Toledo) с тактовой частотой от 2,0 до 2,4 ГГц. Выполнены с использованием 90-нм технологии.

    1 августа 2005 г.AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Manchester) с тактовой частотой от 2,0 до 2,4 ГГц. Выполнены с использованием 90-нм технологии.

    В течение второго полугодия 2005 г. Intel выпускает:
    – линейку 2-ядерных процессоров Pentium D 8** (кодовое название – Smithfield) с тактовой частотой от 2,8 до 3,2 ГГц. Выполнены с использованием 90-нм технологии. 2-ядерные процессоры Pentium D – это два независимых ядра, объединенных на одной кремниевой пластине. Ядра процессоров базируются на архитектуре NetBurst процессоров Pentium 4;
    – линейку 2-ядерных процессоров Pentium D 9** (кодовое название – Presler) с тактовой частотой от 2,8 до 3,4 ГГц. Выполнены с использованием 65-нм технологии (следует отметить, что инженеры Intel воспользовались преимуществом 65-нм технологического процесса, который позволяет либо уменьшить площадь кристалла, либо увеличить количество транзисторов).

    23 мая 2006 г.AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Windsor) с тактовой частотой от 2,0 до 3,2 ГГц. Выполнены с использованием 90-нм технологии.

    27 июля 2006 г. – компания Intel представила линейку 2-ядерных процессоров Intel Core 2 Duo (кодовое название – Conroe) с тактовой частотой 1,8 – 3,0 ГГц. Выполнены с использованием 65-нм технологического процесса.

    27 сентября 2006 г.Intel продемонстрировала прототип 80-ядерного процессора. Предполагается, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс (предположительно, в 2010 г.).

    Ноябрь 2006 г.Intel выпустила линейку 4-ядерных процессоров Intel Core 2 Quad Q6*** (кодовое название – Kentsfield) с тактовой частотой 2,4 – 2,6 ГГц. Выполнены с использованием 65-нм технологии. Фактически представляют собой сборку из двух кристаллов Conroe в одном корпусе.

    5 декабря 2006 г.AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Brisbane) с тактовой частотой от 1,9 до 2,8 ГГц. Выполнены с использованием 65-нм технологии.

    10 сентября 2007 г.AMD выпустила нативные (в виде одного кристалла) 4-ядерные процессоры для серверов AMD Quad-Core Opteron (кодовое название – Barcelona). Выполнены с использованием 65-нм технологии.

    19 ноября 2007 г.AMD выпустила 4-ядерный процессор для домашних компьютеров AMD Quad-Core Phenom. Выполнен с использованием 65-нм технологии.

    Ноябрь 2007 г. – компания Intel представила линейку 2-ядерных процессоров Penryn с тактовой частотой от 2,1 до 3,3 ГГц. Выполнены с использованием 45-нм технологии.

    6 января 2008 г. – компания Intel выпустила (под марками Core 2 Duo и Core 2 Extreme) первые партии 2-ядерных процессоров Penryn, выполненных с использованием 45-нм технологии.

    Февраль 2008 г. – всемирно известный производитель коммуникационного оборудования, компания Cisco Systems, разработала QuantumFlow – 40- ядерный процессор, предназначенный для установки в сетевое оборудование. Процессор, на разработку которого ушло более 5 лет, способен выполнять до 160 параллельных вычислений. Чип будет использоваться в новых сетевых устройствах.

    Март 2008 г. – одноядерные процессоры семейства Pentium 4 (661, 641 и 631) и 2-ядерные семейства Pentium D (945, 935, 925 и 915) сняты с производства.

    Март 2008 г. – компания AMD выпустила 3-ядерные процессоры Phenom X3 8400, 8600, 8450, 8650 и 8750 с тактовой частотой от 2,1 до 2,4 ГГц. Выполнены по 65-нм технологии. Фактически эти процессоры представляют собой 4-ядерные Phenom с одним отключенным ядром. Анонсированы эти процессоры были в сентябре 2007 г. По словам разработчика, подобные чипы рассчитаны на тех, «кому двух ядер мало, но за четыре он платить не готов».
    Основное достоинство 3-ядерных процессоров заключается в том, что они имеют более низкую по сравнению с 4-ядерными чипами стоимость, но работают быстрее 2-ядерных, таким образом, заполняя ассортиментное пространство между теми и другими. Главный конкурент AMD – корпорация Intel – такие процессоры не выпускает. Впервые о намерении приступить к производству подобных чипов AMD объявила в 2007 г.

    Март 2008 г. – компания AMD на выставке CeBIT 2008 в Ганновере представила свои первые процессоры, изготовленные на базе 45-нм технологического процесса. 4-ядерные чипы под кодовым названием Shanghai для серверов и Deneb для настольных систем были изготовлены на фабрике Fab 36 в Дрездене, Германия. Для их производства использовались 300-мм подложки. Техпроцесс с топологическим уровнем 45 нм был разработан компанией AMD совместно с ее партнером, корпорацией IBM. Новые процессоры Shanghai и Deneb, как и Phenom X4, являются «по-настоящему» 4-ядерными, так как все четыре ядра размещены на одной кремниевой подложке.

    Апрель 2008 г. – компания AMD выпустила 4-ядерные процессоры Phenom X4 – 9550, 9650, 9750 и 9850 – с тактовой частотой 2,2–2,5 ГГц. Выполнены по 65-нм технологии.

    Май 2008 г. – выпущен 8-ядерный процессор Cell от IBM. Используется в PlayStation.

    Сентябрь 2008 г. – компания Intel выпустила линейку 4-ядерных процессоров Intel Core 2 Quad Q8*** (кодовое название – Yorkfield) с тактовой частотой 2,3 – 2,5 ГГц. Выполнены с использованием 45-нм технологии.

    Сентябрь 2008 г. – компания Intel выпустила линейку 4-ядерных процессоров Intel Core 2 Quad Q9*** (кодовое название – Yorkfield) с тактовой частотой 2,5 – 3,0 ГГц. Выполнены с использованием 45-нм технологии.

    15 сентября 2008 г. – на конференции VMworld, организованной компанией VMware, корпорация Intel официально сообщила о выходе первого в отрасли массового 6-ядерного серверного процессора Xeon 7400 (кодовое название чипов – Dunnington). Фактически представляет собой три 2-ядерных кристалла, объединенных в одном корпусе. Создан по 45-нм технологии, работает на частоте 2,66 ГГц. Может работать с несколькими операционными системами одновременно. Имеет аппаратную поддержку технологии виртуализации (Intel Virtualization Technology).

    Октябрь 2008 г. – компания Intel разработала 80-ядерный процессор. Изготовлен он по 65-нм технологии, что позволило уменьшить его размеры, но, тем не менее, он остается еще слишком большим для коммерческого использования. Скорее всего, в ближайшие 7 лет процессор будет находиться в стадии доработки. На данный момент существующие технологии не позволяют снизить его энергопотребление и размеры. По мнению специалистов, массовое производство станет возможно только после 2012 г., когда Intel освоит 10-нм техпроцесс. На данный момент известно, что компания планирует введение 32-нм технологии производства процессоров в конце 2009 г., а 22-нм – в 2011 г.
    Сейчас процессор не способен даже запустить операционную систему, но это не смущает разработчиков. Происходит масштабная «обкатка» новых функций, которые будут применяться в будущем в процессорах, одной из которых станет smart-функция по отключению неиспользуемых ядер, что положительно скажется на потреблении электроэнергии и тепловыделении.

    17 ноября 2008 г.Intel представила линейку 4-ядерных процессоров Intel Core i7, в основу которых положена микроархитектура нового поколения Nehalem. Процессоры работают на тактовой частоте 2,6 – 3,2 ГГц. Выполнены по 45-нм техпроцессу. Их главной особенностью является то, что контроллер памяти стал составной частью процессора. Это позволило увеличить скорость работы чипа с модулями оперативной памяти и сделало ненужной фронтальную системную шину FSB.

    Декабрь 2008 г. – начались поставки 4-ядерного процессора AMD Phenom II 940 (кодовое название – Deneb). Работает на частоте 3 ГГц, выпускается по техпроцессу 45-нм.

    Февраль 2009 г. – компания AMD продемонстрировала первый 6-ядерный серверный процессор. Выполнен с использованием 45-нм технологии. Кодовое название процессора – Istanbul, он придет на смену серверным процессорам Opteron с кодовым названием Shanghai, которые имеют только 4 ядра. Массовый выпуск таких чипов планируется начать во II половине 2009 г.

    Февраль 2009 г. – компания AMD объявила о начале поставок новых моделей:
    – 3-ядерный Phenom II X3 (кодовое название чипа – Toliman) с тактовой частотой 2,8 ГГц. Выполнен по 45-нм технологии;
    – 4-ядерный Phenom II X4 810 (кодовое название чипа – Dragon) с тактовой частотой 2,6 ГГц. Выполнен по 45-нм технологии.

    Апрель 2009 г. – компания Intel начала поставки 32-нм центральных процессоров Westmere производителям ПК, как мобильных систем, так и десктопов. Пока речь не идет о готовых коммерческих решениях, а лишь о первых тестовых экземплярах, основное предназначение устройств – их тестирование для выявления некоторых особенностей работы, чтобы производители смогли отладить конструкцию своих систем, и выпустить в продажу полностью совместимые с новым поколением процессоров компьютеры.
    По своей сути, процессоры Westmere представляют собой изготовленную по 32-нм техпроцессу архитектуру Nehalem. Семейство включает в себя две категории микрочипов: решения для настольных компьютеров (кодовое обозначение – Clarkdale), и устройства для мобильных систем (кодовое обозначение – Arrandale).
    «Мобильные» процессоры Arrandale включают не только само процессорное ядро, но и интегрированную графику. Согласно заверениям разработчиков, такая архитектура позволяет существенно снизить энергопотребление связки процессор–системная логика с интегрированной графикой. Помимо этого, за счет перехода на более прецизионный технологический процесс, снизится стоимость изготовления самих микрочипов, а за счет интеграции большего количества элементов на одном «кристалле» снижается и стоимость готовых мобильных компьютеров.
    Поставки серийных экземпляров процессоров Westmere должны стартовать к концу 2009 г.

    Апрель 2009 г. – компания AMD выпустила две новые модели 4-ядерных центральных процессоров для ПК – Phenom II X4 955 Black Edition и Phenom II X4 945. Выполнены по 45-нм технологии.

    14 мая 2009 г. – компания Fujitsu объявила о создании самого производительного в мире процессора, способного выполнять до 128 млрд. операций с плавающей запятой в секунду. Процессор SPARC64 VIIIfx (кодовое название Venus) работает примерно в 2,5 раза быстрее, чем самый мощный чип крупнейшего в мире поставщика микросхем корпорации Intel.
    Увеличение скорости работы стало возможным за счет более плотной интеграции схем процессора и перехода на 45-нм технологию. Ученые смогли расположить на кремниевой пластинке площадью 2 см2 8 вычислительных ядер, вместо 4-х в предыдущих разработках. Снижение уровня топологии также привело к сокращению потребления электроэнергии. В Fujitsu заявляют, что их чип потребляет в 3 раза меньше энергии, чем современные процессоры Intel. Помимо 8 ядер, чип включает в себя контроллер оперативной памяти.
    Процессор SPARC64 VIIIfx планируется использовать в новом суперкомпьютере, который будет построен в институте естественных наук RIKEN в Японии. В него войдут 10 тыс. таких чипов. Суперкомпьютер планируется использовать для прогнозирования землетрясений, исследований медицинских препаратов, ракетных двигателей и прочих научных работ. Запустить компьютер планируется до весны 2010 г.

    Май 2009 г. – компания AMD представила разогнанную версию графического процессора ATI Radeon HD 4890 с тактовой частотой ядра, увеличенной с 850 МГц до 1 ГГц. Это первый графический процессор, работающий на частоте 1 ГГц. Вычислительная мощность чипа, благодаря увеличению частоты, выросла с 1,36 до 1,6 терафлоп (следует заметить, что видеокарты на базе разогнанной версии Radeon HD 4890 не нуждаются в жидкостном охлаждении – достаточно вентилятора).
    Процессор содержит 800 вычислительных ядер, поддерживает видеопамять GDDR5, DirectX 10.1, ATI CrossFireX и все другие технологии, присущие современным моделям видеокарт. Чип изготовлен на базе 55-нм технологии.

    27 мая 2009 г. – корпорация Intel официально представила новый процессор Xeon под кодовым названием Nehalem-EX. Процессор будет содержать до 8 вычислительных ядер, поддерживая обработку до 16 потоков одновременно. Объем кэш-памяти составит 24МБ.
    В Nehalem-EX реализованы новые средства повышения надежности и облегчения технического обслуживания. Процессор унаследовал некоторые функции, которыми обладали чипы Intel Itanium, например, Machine Check Architecture (MCA) Recovery. Также в 8-ядерном процессоре реализованы технологии Turbo Mode и QuickPath Interconnect. Первая технология отвечает за то, чтобы остановленные ядра можно было привести в «боевое состояние» почти мгновенно (что повышает производительность процессора), а вторая технология позволяет ядрам процессора напрямую обращаться к контроллерами ввода/вывода на скорости до 25,5 Гб/сек.
    Nehalem-EX способен обеспечить в 9 раз более высокую скорость работы оперативной памяти по сравнению с Intel Xeon 7400 предыдущего поколения.
    Новый чип подходит для объединения серверных ресурсов, виртуализации, запуска приложений с интенсивной обработкой данных и для проведения научных исследований. Его массовое производство планируется начать во второй половине 2009 г. Чип будет изготовлен на базе 45-нм технологии с применением формулы транзисторов hi-k. Число транзисторов – 2,3 млрд. Первые системы на базе Nehalem-EX ожидаются в начале 2010 г.

    1 июня 2009 г. – компания AMD объявила о начале поставок 6-ядерных серверных процессоров Opteron (кодовое название Istanbul) для систем с двумя, четырьмя и восемью процессорными гнездами. По данным AMD, 6-ядерные процессоры примерно на 50% быстрее по сравнению с серверными процессорами с четырьмя ядрами. Istanbul будет конкурировать с 6-ядерными процессорами Intel Xeon под кодовым названием Dunnington, появившимися в продаже в сентябре 2008 г. Процессор изготавливается с использованием 45-нм технологии, работает на частоте 2,6 ГГц и обладать 6МБ кэш-памяти третьего уровня.

    9 сентября 2009 г.Intel представила новые процессоры – Core i7-860 (2,8 ГГц) и Core i7-870 (2,93 ГГц) с возможностью повышения тактовой частоты до 3,46 и 3,6 ГГц соответственно (технология Intel Turbo Boost). Чипы обладают кэш-памятью объемом 8МБ и интегрированным 2-канальным контроллером оперативной памяти DDR3-1333. Каждый из представленных 4-ядерных процессоров Core i7 может распознаваться системой как 8-ядерный благодаря технологии Hyper-Threading. Кодовое название чипов – Bloomfield, архитектура – Nehalem, техпроцесс – 45 нм.

    22 сентября 2009 г. – компания AMD заявила о намерении выпустить первые 6-ядерные центральные процессоры для ПК. Новинки будут базироваться на 6-ядерной архитектуре серверных процессоров AMD Opteron Istanbul, их кодовое обозначение – Thuban. Как и серверные процессоры Istanbul, Thuban будут представлять собой устройства на основе единого кристалла, при этом изготовление интегральных микросхем будет осуществляться по 45-нм техпроцессу. 6-ядерные процессоры, как и их серверные аналоги, будут состоять из 904 млн. транзисторов, при этом площадь микросхемы составит 346 кв. мм. Предположительно, на рынке процессоры появятся под брендом AMD Phenom II X6.


    Примечания
    1. Кодовое название (обозначение, наименование) – это название ядра процессора.
    2. Линейка – это модельный ряд процессоров одной серии. В рамках одной линейки процессоры могут значительно отличаться друг от друга по целому ряду параметров.
    3. Чип (англ. chip) – кристалл; микросхема.
    4. Под технологическим процессом (техпроцесс, технология, технология производства микропроцессоров) подразумевается размер затвора транзистора. Например, когда мы говорим – 32-нм технологический процесс, – это означает, что размер затвора транзистора составляет 32 нанометра.
    5. Канал – это область транзистора, по которой проходит управляемый ток основных носителей заряда.
    Исток – это электрод транзистора, из которого в канал входят основные носители заряда.
    Сток – это электрод транзистора, через который из канала уходят основные носители заряда.
    Затвор – это электрод транзистора, служащий для регулирования поперечного сечения канала.
    6. Фактически, транзисторы – это миниатюрные переключатели, с помощью которых реализуются те самые «нули» и «единицы», составляющие основу цифровой информации. Затвор предназначен для включения и выключения транзистора. Во включенном состоянии транзистор пропускает ток, а в выключенном – нет. Диэлектрик затвора расположен под электродом затвора. Он предназначен для изоляции затвора, когда ток проходит через транзистор.
    Более 40 лет для изготовления диэлектриков затвора транзистора использовался диоксид кремния (благодаря легкости его применения в массовом производстве и возможности постоянного повышения производительности транзисторов за счет уменьшения толщины слоя диэлектрика). Специалистам Intel удалось уменьшить толщину слоя диэлектрика до 1,2 нм (что равнозначно всего 5 атомарным слоям!) – такой показатель был достигнут в 65-нанометровой технологии производства.
    Однако дальнейшее уменьшение толщины слоя диэлектрика приводит к усилению тока утечки через диэлектрик, в результате чего растут потери тока и тепловыделение. Рост тока утечки через затвор транзистора по мере уменьшения толщины слоя диэлектрика из диоксида кремния является одним из самых труднопреодолимых технических препятствий на пути следования закону Мура. Для решения этой принципиальной проблемы корпорация Intel заменила диоксид кремния в диэлектрике затвора на тонкий слой из материала high-k на основе гафния. Это позволило уменьшить ток утечки более чем в 10 раз по сравнению с диоксидом кремния. Материал high-k диэлектрика затвора несовместим с традиционными кремниевыми электродами затвора, поэтому в качестве второй составляющей «рецепта» Intel для ее новых транзисторов, создаваемых на основе 45-нанометрового техпроцесса, стала разработка электродов с применением новых металлических материалов. Для изготовления электродов затвора транзистора применяется комбинация различных металлических материалов.
    7. Приведенная в статье хронология создания многоядерных процессоров не претендует на всеобъемлющий охват.

    Валерий Сидоров
    http://netler.ru/
    Семь раз отпей, один раз отъешь!

  2. #2

    По умолчанию

    Зачем нужны многоядерные микропроцессоры?



    Еще core, да еще core, да еще много, много core!..
    …Еще совсем недавно мы не слышали и не ведали о многоядерных процессорах, а сегодня они агрессивно вытесняют одноядерные. Начался бум многоядерных процессоров, который пока – слегка! – сдерживают их сравнительно высокие цены. Но никто уже не сомневается, что будущее – именно за многоядерными процессорами!..

    Что такое ядро процессора
    В центре современного центрального микропроцессора (CPU – сокр. от англ. central processing unit – центральное вычислительное устройство) находится ядро (core) – кристалл кремния площадью примерно один квадратный сантиметр, на котором посредством микроскопических логических элементов реализована принципиальная схема процессора, так называемая архитектура (chip architecture).

    Ядро связано с остальной частью чипа (называемой «упаковка», CPU Package) по технологии «флип-чип» (flip-chip, flip-chip bonding – перевернутое ядро, крепление методом перевернутого кристалла). Эта технология получила такое название потому, что обращенная наружу – видимая – часть ядра на самом деле является его «дном», – чтобы обеспечить прямой контакт с радиатором кулера для лучшей теплоотдачи. С обратной (невидимой) стороны находится сам «интерфейс» – соединение кристалла и упаковки. Соединение ядра процессора с упаковкой выполнено с помощью столбиковых выводов (Solder Bumps).
    Ядро расположено на текстолитовой основе, по которой проходят контактные дорожки к «ножкам» (контактным площадкам), залито термическим интерфейсом и закрыто защитной металлической крышкой.

    Что такое многоядерный процессор
    Многоядерный процессор – это центральный микропроцессор, содержащий 2 и более вычислительных ядра на одном процессорном кристалле или в одном корпусе.

    Для чего нужна многоядерность
    Первый (естественно, одноядерный!) микропроцессор Intel 4004 был представлен 15 ноября 1971 г. корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 108 кГц и стоил $300.
    Требования к вычислительной мощности центрального микропроцессора постоянно росли и продолжают расти. Но если раньше производителям процессоров приходилось постоянно подстраиваться под текущие насущные (вечно растущие!) запросы пользователей ПК, то теперь чипмейкеры идут с бо-о-о-льшим опережением!

    Долгое время повышение производительности традиционных одноядерных процессоров в основном происходило за счет последовательного увеличения тактовой частоты (около 80% производительности процессора определяла именно тактовая частота) с одновременным увеличением количества транзисторов на одном кристалле. Однако дальнейшее повышение тактовой частоты (при тактовой частоте более 3,8 ГГц чипы попросту перегреваются!) упирается в ряд фундаментальных физических барьеров (поскольку технологический процесс почти вплотную приблизился к размерам атома: сегодня процессоры выпускаются по 45-нм технологии, а размеры атома кремния – приблизительно 0,543 нм):
    • во-первых, с уменьшением размеров кристалла и с повышением тактовой частоты возрастает ток утечки транзисторов. Это ведет к повышению потребляемой мощности и увеличению выброса тепла;
    • во-вторых, преимущества более высокой тактовой частоты частично сводятся на нет из-за задержек при обращении к памяти, так как время доступа к памяти не соответствует возрастающим тактовым частотам;
    • в-третьих, для некоторых приложений традиционные последовательные архитектуры становятся неэффективными с возрастанием тактовой частоты из-за так называемого «фон-неймановского узкого места» – ограничения производительности в результате последовательного потока вычислений. При этом возрастают резистивно-емкостные задержки передачи сигналов, что является дополнительным узким местом, связанным с повышением тактовой частоты.

    Применение многопроцессорных систем также не получило широкого распространения, так как требует сложных и дорогостоящих многопроцессорных материнских плат. Поэтому было решено добиваться дальнейшего повышения производительности микропроцессоров другими средствами. Самым эффективным направлением была признана концепция многопоточности, зародившаяся в мире суперкомпьютеров, – это одновременная параллельная обработка нескольких потоков команд.

    Так в недрах компании Intel родилась Hyper-Threading Technology (HTT) – технология сверхпоточной обработки данных, которая позволяет процессору выполнять в одноядерном процессоре параллельно до четырех программных потоков одновременно. Hyper-threading значительно повышает эффективность выполнения ресурсоемких приложений (например, связанных с аудио- и видеоредактированием, 3D-моделированием), а также работу ОС в многозадачном режиме.
    Процессор Pentium 4 с включенным Hyper-threading имеет одно физическое ядро, которое разделено на два логических, поэтому операционная система определяет его, как два разных процессора (вместо одного).

    Hyper-threading фактически стала трамплином к созданию процессоров с двумя физическими ядрами на одном кристалле. В 2-ядерном чипе параллельно работают два ядра (два процессора!), которые при меньшей тактовой частоте обеспечивают большую производительность, поскольку параллельно (одновременно!) выполняются два независимых потока инструкций.
    Способность процессора выполнять одновременно несколько программных потоков называется параллелизмом на уровне потоков (TLPthread-level parallelism). Необходимость в TLP зависит от конкретной ситуации (в некоторых случаях она просто бесполезна!).

    Основные проблемы создания многоядерных процессоров
    • каждое ядро процессора должно быть независимым, – с независимым энергопотреблением и управляемой мощностью;
    • рынок программного обеспечения должен быть обеспечен программами, способными эффективно разбивать алгоритм ветвления команд на четное (для процессоров с четным количеством ядер) или на нечетное (для процессоров с нечетным количеством ядер) количество потоков;
    • …

    Преимущества многоядерных процессоров
    • возможность распределять работу программ, например, основных задач приложений и фоновых задач операционной системы, по нескольким ядрам;
    • увеличение скорости работы программ;
    • процессы, требующие интенсивных вычислений, протекают намного быстрее;
    • более эффективное использование требовательных к вычислительным ресурсам мультимедийных приложений (например, видеоредакторов);
    • снижение энергопотребления;
    • работа пользователя ПК становится более комфортной;
    • …

    Недостатки многоядерных процессоров
    • возросшая себестоимость производства многоядерных процессоров (по сравнению с одноядерными) заставляет чипмейкеров увеличивать их стоимость, а это отчасти сдерживает спрос;
    • так как с оперативной памятью одновременно работают сразу два и более ядра, необходимо «научить» их работать без конфликтов;
    • возросшее энергопотребление требует применения мощных схем питания;
    • требуется более мощная система охлаждения;
    • количество оптимизированного под многоядерность программного обеспечения ничтожно мало (большинство программ рассчитаны на работу в классическом одноядерном режиме, поэтому они просто не могут задействовать вычислительную мощь дополнительных ядер);
    • операционные системы, поддерживающие многоядерные процессоры (например, Windows XP SP2 и выше) используют вычислительные ресурсы дополнительных ядер для собственных системных нужд;
    • …

    Следует признать, что в настоящее время многоядерные процессоры используются крайне неэффективно. Кроме того, на практике n-ядерные процессоры не производят вычисления в n раз быстрее одноядерных: хотя прирост быстродействия и оказывается значительным, но при этом он во многом зависит от типа приложения. У программ, которые не рассчитаны на работу с многоядерными процессорами, быстродействие увеличивается всего на 5%. А вот оптимизированные под многоядерные процессоры программы работают быстрее уже на 50%.

    Ядер, как и памяти, много не бывает!..
    Лидеры процессоростроения, компании Intel и AMD, считают, что будущее за параллельными вычислениями и продолжают последовательно наращивать количество ядер в процессорах.

    Появление многоядерных процессоров стимулирует появление операционных систем и прикладного программного обеспечения, поддерживающего многоядерность.

    ***
    Мнения чипмейкеров о многоядерности
    • По сообщению пресс-службы AMD, на сегодня рынок 4-ядерных процессоров составляет не более 2% от общего объема. Очевидно, что для современного покупателя приобретение 4-ядерного процессора для домашних нужд пока почти не имеет смысла по многим причинам. Во-первых, на сегодня практически нет программ, способных эффективно использовать преимущества 4-х одновременно работающих потоков; во-вторых, производители ПК позиционируют 4-ядерные процессоры, как Hi-End-решения, добавляя к оснастке ПК самые современные видеокарты и объемные жесткие диски, – а это в конечном счете еще больше увеличивает стоимость и без того недешевых ПК…

    • Разработчики Intel говорят: «…в процессе развития количество ядер будет становиться всё больше и больше…».

    ***
    Что ждет нас в будущем
    • В корпорации Intel уже говорят не о «Мультиядерности» (Multi-Core) процессоров, как это делается в отношении 2-, 4-, 8-, 16- или даже 32-ядерных решений, а о «Многоядерности» (Many-Core), подразумевая совершенно новую архитектурную макроструктуру чипа, сравнимую (но не схожую) с архитектурой процессора Cell.
    Структура такого Many-Core-чипа подразумевает работу с тем же набором инструкций, но с помощью мощного центрального ядра или нескольких мощных CPU, «окруженных» множеством вспомогательных ядер, что поможет более эффективно обрабатывать сложные мультимедийные приложения в многопоточном режиме. Кроме ядер «общего назначения», процессоры Intel будут обладать также специализированными ядрами для выполнения различных классов задач – таких, как графика, алгоритмы распознавания речи, обработка коммуникационных протоколов.

    Именно такую архитектуру представил Джастин Раттнер (Justin R. Rattner), руководитель сектора Corporate Technology Group Intel, на пресс-конференции в Токио. По его словам, таких вспомогательных ядер в новом многоядерном процессоре может насчитываться несколько дюжин. В отличие от ориентации на большие, энергоемкие вычислительные ядра с большой теплоотдачей, многоядерные кристаллы Intel будут активизировать только те ядра, которые необходимы для выполнения текущей задачи, тогда как остальные ядра будут отключены. Это позволит кристаллу потреблять ровно столько электроэнергии, сколько нужно в данный момент времени.

    • В июле 2008 г. корпорация Intel сообщила, что рассматривает возможность интеграции в один процессор нескольких десятков и даже тысяч вычислительных ядер. Ведущий инженер компании Энвар Галум (Anwar Ghuloum) написал в своем блоге: «В конечном счете, я рекомендую воспользоваться следующим моим советом… разработчики уже сейчас должны начать думать о десятках, сотнях и тысячах ядер». По его словам, в настоящий момент Intel изучает технологии, которые смогли бы масштабировать вычисления «на то количество ядер, которые мы пока не продаем».

    По мнению Галума, в конечном счете успех многоядерных систем будет зависеть от разработчиков, которым, вероятно, придется изменить языки программирования и переписать все существующие библиотеки.

    • Преимущества многоядерности (или параллелизма) описаны в статье «Платформа 2015: развитие процессоров и платформ Intel® в ближайшие 10 лет». Авторы статьи сообщают, что Intel в течение нескольких следующих лет планирует выпустить процессоры, которые будут содержать множество ядер – в некоторых случаях сотни. По словам специалистов, архитектура с поддержкой многопроцессорной обработки на уровне кристалла (CMP Chip-level multiprocessing – многопроцессорная обработка на уровне кристалла) является будущим микропроцессоров, так как «позволяет достичь высокой производительности и в то же время обеспечить эффективное управление питанием и эффективный режим охлаждения».


    Примечания
    1. Кодовое название (обозначение, наименование) – это название ядра процессора.
    2. Линейка – это модельный ряд процессоров одной серии. В рамках одной линейки процессоры могут значительно отличаться друг от друга по целому ряду параметров.
    3. Чип (англ. chip) – кристалл; микросхема.
    4. Под технологическим процессом (техпроцесс, технология, технология производства микропроцессоров) подразумевается размер затвора транзистора. Например, когда мы говорим – 32-нм технологический процесс, – это означает, что размер затвора транзистора составляет 32 нанометра.
    5. Канал – это область транзистора, по которой проходит управляемый ток основных носителей заряда.
    Исток – это электрод транзистора, из которого в канал входят основные носители заряда.
    Сток – это электрод транзистора, через который из канала уходят основные носители заряда.
    Затвор – это электрод транзистора, служащий для регулирования поперечного сечения канала.
    6. Фактически, транзисторы – это миниатюрные переключатели, с помощью которых реализуются те самые «нули» и «единицы», составляющие основу цифровой информации. Затвор предназначен для включения и выключения транзистора. Во включенном состоянии транзистор пропускает ток, а в выключенном – нет. Диэлектрик затвора расположен под электродом затвора. Он предназначен для изоляции затвора, когда ток проходит через транзистор.
    Более 40 лет для изготовления диэлектриков затвора транзистора использовался диоксид кремния (благодаря легкости его применения в массовом производстве и возможности постоянного повышения производительности транзисторов за счет уменьшения толщины слоя диэлектрика). Специалистам Intel удалось уменьшить толщину слоя диэлектрика до 1,2 нм (что равнозначно всего 5 атомарным слоям!) – такой показатель был достигнут в 65-нанометровой технологии производства.
    Однако дальнейшее уменьшение толщины слоя диэлектрика приводит к усилению тока утечки через диэлектрик, в результате чего растут потери тока и тепловыделение. Рост тока утечки через затвор транзистора по мере уменьшения толщины слоя диэлектрика из диоксида кремния является одним из самых труднопреодолимых технических препятствий на пути следования закону Мура. Для решения этой принципиальной проблемы корпорация Intel заменила диоксид кремния в диэлектрике затвора на тонкий слой из материала high-k на основе гафния. Это позволило уменьшить ток утечки более чем в 10 раз по сравнению с диоксидом кремния. Материал high-k диэлектрика затвора несовместим с традиционными кремниевыми электродами затвора, поэтому в качестве второй составляющей «рецепта» Intel для ее новых транзисторов, создаваемых на основе 45-нанометрового техпроцесса, стала разработка электродов с применением новых металлических материалов. Для изготовления электродов затвора транзистора применяется комбинация различных металлических материалов.

    Валерий Сидоров
    http://netler.ru/pc/


    Семь раз отпей, один раз отъешь!

Информация о теме

Пользователи, просматривающие эту тему

Эту тему просматривают: 1 (пользователей: 0 , гостей: 1)

Социальные закладки

Социальные закладки

Ваши права

  • Вы не можете создавать новые темы
  • Вы не можете отвечать в темах
  • Вы не можете прикреплять вложения
  • Вы не можете редактировать свои сообщения
  •  

Рейтинг@Mail.ru

Яндекс цитирования